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Abstract—We propose a novel method for the automatic monitor the fetal growth. The current workflow requires expe
detection and measurement of fetal anatomical structuresni ysers to perform those measurements manually, resultiingin
ultrasound images. This problem offers a myriad of challengs, = {4 15\ying issues: 1) the quality of the measurements are-use

including: difficulty of modeling the appearance variations of the . . .
visual object of interest; robustness to speckle noise andgnal dependent; 2) exams can take more than 30 minutes; and 3) ex-

drop-out; and large search space of the detection procedure Pertusers can suffer from Repetitive Stress Injury (RS§ tiu
Previous solutions typically rely on the explicit encodingof the multiple keystrokes needed to perform the measurements

prior knowledge and formulation of the problem as a per- Therefore, the automation of ultrasound measurementdeas t
ceptual grouping task solved through clustering or variatonal potential of: 1) improving everyday workflow; 2) increasing

approaches. These methods are constrained by the validityf the tient th hout: 3) | - d isteof
underlying assumptions and usually are not enough to captwe patient throughput; 3) improving accuracy and consistesfcy

the complex appearances of fetal anatomies. We propose ameasurements, bringirexpert-like consistendyp every exam;
novel system for fast automatic detection and measurementfo and 4) reducing the risk of RSI to specialists.

fetal anatomies that directly exploits a large database of xpert We focus on a method that targets thetomatic on-line
annotated fetal anatomical structures in ultrasound imags.  jetection and segmentaticof fetal head, abdomen, femur,
Our method learns automatically to distinguish between the . . . !
appearance of the object of interest and background by traiing humerus, and body length in typical ultrasound images, lvhic
a constrained probabilistic boosting tree classifier. Thissystem are then used to compute BDP and HC for head, AC for
is able to produce the automatic segmentation of several f&t abdomen, FL for femur, HL for humerus, and CRL for the
anatomies using the same basic detection algorithm. We showhody |ength [5] (see Fig. 5). We concentrate on the following
results on fully automatic measurement of biparietal diaméer goals for our method: 1) efficiency (the process should &t |

(BPD), head circumference (HC), abdominal circumferenceAC), h d): b h .
femur length (FL), humerus length (HL), and crown rump length than one second); 2) robustness to the appearance vasiation

(CRL). Notice that our approach is the first in the literature to  Of the visual object of interest; 3) robustness to speckle
deal with the HL and CRL measurements. Extensive experimerst noise and signal drop-out typical in ultrasound images; and

(with clinical validation) show that our system is, on aver@e, 4) segmentation accuracy. Moreover, we require the basic
close to the accuracy of experts in terms of segmentation and algorithm to be the same for the segmentation of the diferen
obstetric measurements. Finally this system runs under hél . f . di d facili h .
second on a standard dual-core PC computer. anatomies aforementioned in order to facilitate the ex¢ens

Index T Medical | Analvsis. S sed Learni of this system to other fetal anatomies.

naex lerms—Iiviedical Image Analysls, supervise earning, . . _ .
Top-down Image Segmentation, Visual Object Recognition, I3- To achlgve these_ goals, we exploit _the database-guided
criminative Classifier. segmentation paradigm [_14] in the do_mam of fetal ultra$1bu_n
images. Our approach directly exploits the expert anratati
of fetal anatomical structures in large databases of witnag
images in order to train a sequence of discriminative classi

Accurate fetal ultrasound measurements are one of #i&s. The classifier used in this work is based on a constiaine
most important factors for high quality obstetrics healéiec versijon of the probabilistic boosting tree [37].
Common fetal ultrasound measurements include: bi-parietagyy system is capable of handling a previously issue in
diameter (BDP), head circumference (HC), abdominal circurthe domain of fetal ultrasound image analysis, which are: th
ference (AC), femur length (FL), humerus length (HL), andutomatic measurements of HL and CRL, and the fact that
crown rump length (CRL). In this paper we use the Americagyr approach is designed to be completely automatic. This
Institute of Ultrasound in Medicine (AIUM) guidelines [1] means that the user does not need to provide any type of
to perform such measurements. These measures are usedifidl guess. The only inputs to the system are the image and
estimate both the ges_tatmnal age (GA) of the fetus (i.®, tthe measurement to be performed (BPD, HC, AC, FL, HL,
length of pregnancy in weeks and days [34]), and also gg CRL). Extensive experiments show that, on average, the
an important diagnostic auxiliary tool. Accurate estirati measurement produced by our system is close to the accuracy
of GA is important to estimate the date of confinement ang the annotation made by experts for the fetal measurements
the expected delivery date, to assess the fetal size, andyigntioned above. Moreover, the algorithm runs under half
second on a standard dual core PC computer

I. INTRODUCTION
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A. Paper Organization Eq. 21). However, a different method had to be implemented

This paper is organized as follows. Section I presen@r ef_;lch anatomy, showing the I_ack of generalization of such
a literature review, Section Il defines the problem, and f@l9orithms. Also, the segmentation of abdomen has not been
Section IV we explain our method. Finally, Section V show@ddressed. Finally, the implemented systems needed a few

the experiments, and we conclude the paper in Section VI MiNUtes to run segmentation process.
Chalana et al. [7], [8], [29] describe a method for fetal

head and abdomen segmentation in ultrasound images based
on the active contour model. This method can get stuck at
In this literature review we survey papers that aim dbcal minima, which might require manual correction. Also,
the same goals as ours, which are: precise segmentatibie, algorithm does not model the texture inside the fetal
robustness to noise and to the visual class intra varigldlitd head, which means that no appearance information is used
fast processing. First, we focus on the papers that describeimprove the accuracy and robustness of the approach.
approaches for detecting and segmenting fetal anatomiesEixperiments on 30 cases for BPD, HC, and AC, show that
ultrasound images. Then, we survey methods designed to wihk algorithm performs as well as five sonographers, and that
on the segmentation of anatomical structures from ultnagdodit runs in real time. Finally, another issue is that the ussds
images that, in principle, could also be applied to our peobl to provide an initial guess for the algorithm, which makes th
We also discuss relevant computer vision techniques facdetsystem semi-automatic.
tion and segmentation since our method is closely related taJardim and Figueiredo [18] present a method for the seg-
these computer vision methods. Finally, we explain the mainentation of fetal ultrasound images based on the evolution
novelties of our approach compared to the state-of-théartof a parametric deformable shape. Their approach segments
the fields of computer vision, machine learning, and medicdle input image into two regions, so that pixels within each
image analysis. region have similar texture statistics according to a patam
There is relatively little work in area of automatic segn@ent model defined by the Rayleigh distribution. A drawback of
tion of fetal anatomies in ultrasound images [7], [8], [18B], this method is that there is no guarantee that the algorithm
[24], [29], [36]. One possible reason for this, as mentionadlill always find the optimal solution, which is a fact noted by
by Jardim [18], is the low quality of fetal ultrasound imageghe authors. Another limitation is that the appearance inode
which can be caused by low signal-to-noise ratio, markedbased on the Rayleigh distribution cannot take into accthnt
different ways of image acquisition, large intra class aon spatial structure of textural patterns present inside thaial
because of differences in the fetus age and the dynamice of thoss-section. This method also needs an initial guesstiiem
fetal body (e.g., the stomach in the abdomen images can user, which makes the system semi-automatic. The authers us
completely full or visually absent, and the shape of thelfetthis approach for the segmentation of fetal heads and femurs
body changes significantly in terms of the gestational age- 9n 50 ultrasound images with good results.
Fig. 7), strong shadows produced by the skull (in head imjages The segmentation of other anatomies from ultrasound im-
spine and ribs (in abdomen images), femur, and humerusages has also produced relevant solutions that can be @pplie
noticeable commonality among the papers cited above is thii the problem of segmentation of fetal anatomical strestur
focus on the detection and segmentation of only fetal heatisus, in this section we focus on methods designed to work
and femurs, but not fetal abdomen (except for [8]), humerusn problems involving similar challenges, which are: low
or body. Among these anatomies, the fetal head segmentatiprality of ultrasound images, large intra class variatiamnd
is the least complicated due to the clear boundaries prdvidgrong shadows produced by the anatomical structure. 8ever
by the skull bones, and the similar texture among differetéchniques have been proposed [30], but we shall focus this
subjects (see Fig. 7-(a)). The problem of femur and humeneview on the following promising techniques: pixel-wise
segmentation is somewhat more complicated because of #mel region-wise classifier models, low-level models, Marko
absence of internal texture (see Fig. 7-(c,d)), but thegmes random field models, machine learning based models, and
of clear edges produced by the imaging of the bones faeiftatdeformable models.
the problem. Finally, the segmentation of the fetal abdomenThe most promising techniques in this area are based on a
and fetal body are the hardest among these anatomies. Thmbination of region-wise classifier models and deformabl
fetal abdomen presents a lack of clear boundaries and medels, where an evolving contour defines a partition of the
consistent imaging of the internal structures among differ image into two regions. Assuming a parametric distribufam
subjects (see Fig. 7-(b)), while the fetal body changedi#ps each region, one can have a term of appearance coherence for
considerably as a function of the fetal age (see Fig. 7-(e)).each region in the optimization algorithm for the deforneabl
The initial approaches for automatic fetal anatomical segiodel [6], [41]. This is a similar approach to the paper above
mentation in ultrasound images were mostly based on méxy Jardim [18], and consequently shares the same problems
phological operators [15], [24], [36]. These methods imeol that makes it not ideal for our goals. Level set represemati
a series of steps, such as edge detection, edge linking,Hotlwat integrates boundary-driven flows with regional infarm
transform, among other standard computer vision techsiqudon [26], [35] can handle arbitrary initial conditions, h
to provide head and femur segmentation. When companmdkes these approaches completely automatic, but they are
to the measurements provided by experts, the segmentasensitive to noise and incomplete data. The latter problesn h
results showed correlation coefficients bigger than 0.2 (sbeen dealt with by adding a shape influence term [20], [27].

Il. LITERATURE REVIEW
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The most prominent similarity among these techniques is thdiculation, which is not true in the domain of fetal anatcah
under utilization of the appearance model of the anatomicgtucture segmentation.
structure being detected. The parameter estimation of theThe method we propose in this paper is more aligned
probability distributions for the foreground and backgrdu with the state-of-the-art detection and top-down segntiemta
regions is clearly insufficient to model the complex appeaea methods proposed in computer vision and machine learn-
patterns for several reasons. First, the parametric bligioin  ing. Specifically, we exploit the database-guided segntienta
might not provide a reasonable representation for the appgaaradigm [14] in the domain of fetal ultrasound images. In
ance statistics. Second, the parameters may not be cgrreatldition to the challenges present in echocardiographj; [14
estimated using only the image being processed. Third, ther method has to handle new challenges present in fetal
spatial structure of the texture cannot be captured witth sugltrasound images, such as the extreme appearance \igyiabil
representation. In general, these techniques tend to welk wof the fetal abdomen and fetal body imaging, generalization
whenever image gradients separate the sought anatomibalsame basic detection algorithm to all anatomical sirest
structure, but recall that for abdomens, this assumptiop mand extreme efficiency. In order to cope with these new
not always be true, so one has to fully rely on its internaghallenges, we constrain the recently proposed probadbilis
appearance for proper segmentation. boosting tree classifier [37] to limit the number of nodes
The use of deformable models alone has also been @xesent in the binary tree, and also to divide the original
ploited [2], but the lack of a learning scheme for the ap:lassification into hierarchical stages of increasing dewity.
pearance term restricts their applicability to our prohlem
Moreover, the priors assumed for the anatomical structnde a !!l. AUTOMATIC MEASUREMENT OFFETAL ANATOMY
imaging process does not generalize well for fetal anataimic Our method is based on a learning process that implicitly en-
structures in ultrasound images, and even though Akgul @ddes the knowledge embedded in expert annotated databases
al. [2] work on the local minima issues of such approachefhis learning process produces models that are used in the
their design only alleviates the problem. Deformable mededegmentation procedure. The segmentation is then posed as a
can also be used with machine learning techniques to leaagk of structure detectionwhere the system automatically
shape and motion patterns of anatomical structures [14}-Hosegments an image region containing the sought structure.
ever, the lack of a term representing appearance chasditsri Finally, the fetal measurements can be derived from this
of the anatomical structure in [17] restricts the appliigbof  region.
this method to our problem. Typically, the issue of low signa
to-noise ratio has been solved with the utilization of a sspe A. Problem Definition

of low-level models [23], [28]. However, itis not clear whet 1 itimate goal of our system is to provide a segmentation
these methods can generalize to all possible differentimag ot the most likely rectangular image region containing the
conditions that we have to deal with. Finally, an interestin.

: i ] - 'anatomical structure of interest. From this rectangulgiorg
area of research is the use of pixel-wise posterior protybily; js nossible to determine the measurements of interest (i.

term using a Markov random field prior model [39]. Th&spp HC. AC. FL. HL. and CRL), as shown below. We

main problems affecting such approaches are the difficalty 4ot the following definition of segmentation: assume that
determining the parameters for spatial interaction [30ld a o image domain is defined by : RVN*M . R with N

the high computational costs that limits its applicabilftr denoting the number of rows and the number of columns,

on-line methods. _ o _then the segmentation task determines the $ef8 c I,
More generally, in the fields of computer vision and machingpere 5 represents the foreground region (i.e., the structure

learning there has been a great interest in the problem d‘?finterest), andB means the background. The sets satisfy
accurate and robust detection and segmentation of visyal constraintS | J B = I, whereS N B = 0. The foreground

classes. Active appearance models [10] use registrationirpzpage regions is determined by the following vector:
infer the shape associated with the current image. However,

modeling assumes a Gaussian distribution of the joint shape 0= [z,y,a,04,0,], (1)

texture space and requires initialization close to the fing .
. . L . where the parameter represent the top left region
solution. Alternatively, characteristic points can beed#td P br,y) rep P g

in the input image [11] by learning a classifier throug}ﬁ_‘osnIon in the imagea denotes orientation, antb, o),

. . e region scale (see Fig. 1).
boosting [11], [38]. The most accurate segmentgtlon reSUL The appearance of the image region is represented with fea-
have been presented by recently proposed techniques Hr]att&res derived from the Haar wavelets [31], [38]. The dedisio
based on strongly supervised training, and the represimmta% '

is based h h both th " q r the use of such feature set is based on two main reasons: 1)
elation between parts, s modeled at & Markov random g Mdeling power for the difierent ypes of viualpateer
or conditional random field [4], [16], [19], [21], [22]. Altbugh ch as pedestrians [31], faces [38], and left ventricles in

th tati it ted b h h ultrasound images [14]; and 2) computation efficiency with
€ segmentation resulls presented by SUCh approaches argfy | qq of integral images. All the feature types used in this
cellent, these algorithms are computationally intensiveich

makes on-line detection a hard goal to be achieved. Alsﬁ%rﬁoﬁgiv::;ﬂ:gﬁ:énvgcl:?(')r.z' and each feature is denoted by
1€ :

the use of parts is based on the assumption that the visu
object of interest may suffer severe non-rigid deformation Or = [t,xr,yyr,ds, dy, s], (2)
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TYPE2

£l
A

TYPES TYPES6

Fig. 1. Foreground (rectangular) image region with five peters. TYPE4

Fig. 2. Image feature types used. Notice that the gray ang@sents the
foreground regionsS.

wheret € {1,...,6} denotes the feature typér,,ys) is the

top-left coordinate of the feature location withthdefined by ) )

0inEq. 1 (i.e.xs € [1,1+4 (0x —d,)] andy; € [1,1+ (o, — Of the system is to determine

dy)]), ds,d, are _the length and width of the spatial support §* = arg max P(y|9), 4)
of the feature withd, € [1,0,] andd, € [1,0,] (note that 0

01z} IS defined in Eq. 1), and € {41, —1} represents the whereS is the foreground image region defined bin Eq. 1.
two versions of each feature with its original or inverteghs. Therefore, our task is to train a discriminative classifieatt
Note that the feature has the same orientaticss the image minimizes the following probability of mis-classification
region.

The output value of each feature is the difference between P(erron) = /P(e"Oﬂ@)P@)d@,

the image pixels lying in the white section (in Fig. 2, theioeg 0

denoted by +1) and the image pixels in the black section (fH€re

Fig. 2, the region denoted by -1). This feature value can be P(erroff) = { 3_1 7gtge7réwyise ,
efficiently computed using integral images [31]. The in&gr ’
image is computed as follows: with y = argmax,c;_1 41} P(y|S) and g being the correct
c v response for the parameter valfie
T(zy) =YY I(z.y), 3)

i=0 j=0 IV. REGION CLASSIFICATION PROCESS
whereT : RV*M _, R denotes the integral image. Then the N this section, we discuss the classifier used in this work
feature value is computed efficiently through a small numb@pd the strategy to improve the efficiency and efficacy of the
of additions and subtractions. For example, the featureevaclassification problem. We also show the training and dietect
of feature type 1 in Fig. 2 can be computed as algorithms along with the training results.

_ 7+ -
fbr) = Tf - Tf ’ A. Probabilistic Boosting Tree

where The classifier used for the anatomical structure detec-
Tf+ = T(xs+ de,yf +dy)+ T (xf,y5)— tion is derived from the probabilistic boosting tree cléssi
T(x} tde ) — T(xf ys+dy) (PBT) [37]. The PBT classifier is a boosting classifier [12],
T, = Tl(af+ d2z : yr +dy) + 7T(asf +yd7:, yr)— [33], where the strong classifiers are represented by thesnod

do of a binary tree. Tu [37] demonstrates that the PBT is
T(ws+dasyy) = Twp + Foys +dy). able to cluster the data automatically, allowing for a bjnar
This means that the integral image is computed once agldssification of data sets presenting multi-modal distidns,
each feature value involves the addition and subtraction which is typically the case studied in this paper. Another
six values from the integral image. It is important to mentioattractive property of the PBT classifier is that after tiragn
that the original image is rotated in intervals 6f (in the posterior probability can be used as a threshold to balan
this work, J, = 10°) and an integral image is computedhetween precision and recall, which is an important adgnta
for each rotated image. These rotations and integral imag@er the cascade method [38] that needs to train different
computations comprise the pre-processing part of our niethelassifiers based on different precision requirements.
Taking into account all possible feature types, locati@ms] Training the PBT involves the recursive construction of a
sizes, there can be in the orderl®® possible features within binary tree, where each of its nodes represents a strong clas
a region. sifier. Each node is trained with the AdaBoost algorithm [13]
A classifier then defines the following functio®(y|S), which automatically learns a strong classifier by combirang
wherey € {—1,+1} with P(y = +1|5) representing the set of weak classifier# (S) = 7, w:h:(S), whereS is an
probability that the image regio¥ contains the structure image region determined yin (1), 4:(5) is the response of
of interest (i.e., a positive sample), and(y = —1|5), a weak classifier, and; is the weight associated with each
the probability that the image regio$ contains background weak classifier. By minimizing the probability of error, the
information (i.e., a negative sample). Notice that the nganal Adaboost classifier automatically selects the weak classifi
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and their respective weights. The probabilities computed b
each strong classifier is then denoted as follows [37]:

115) = 200 do(-18) = — 2 g Jol
+ = ———=, andq(— = | .
a(+119) = Tae ¢(-119) = 1 =rE- TS NN
The posterior probability that a regio$ is foreground § = 1 1 Q,
+1), or backgroundy = —1) is computed as in [37]: e \*‘ / \\
1, allylf,=-1.5) qthyl1y=+1,5)
O O @ O

PlS)= > PWln,...1,S).qll2ll1, $)q(L]S), (6)

lidzyeln
wheren is the total number of nodes of the tree (see Fig. 3), | |
and ! € {-1,41}. The probability at each tree node is 1 1 1 1 1 =
computed as: e 6 ¢ o o o
P(ylli, ..., 11, 5) = Z 0y = liv1)q(lix1llsy -y 11, S), Fig. 3. PBT binary tree structure.
!

i+1

Ply| 5,1y=-11,=-1) Ply| 5,1 =+1,i,=-1)
Plv| 51,=-10=+1)  P| Sil=+11=+1)

whereq(.|.) is defined in (5), and

1, if x =true a ‘0 . ‘3

The original PBT classifier presents a problem: if th
classification is too hard (i.e., it is difficult to find a furan 2 fa 02
that robustly separates positive from negative sampleghwh
is the case being dealt with in this paper), the tree can becofig- 4. Simple to complex strategy using a 2-dimensionaapater space,
lv complex. which can cause: a) overfit of the trainintad where the target parameter values are represented by thiempos From left

Pver y plex, : o [t 8o right, the first graph shows two regions in the parametacespthe black
in the nodes close to the leaves, b) long training procedusésa containing the negative samples, and the white arém tigt positive
and c) long detection procedure. The overfit of the data in tf@mples. Notice that in this first graph, the training anectéin happen only
leaf nod h b f the limited b f trai for the parametef;. The second graph shows a training and detection using
ear nodes ap_p_ens ecal_Jse of the imi e number or trainigyy, parameters, where the positive samples are acquived tfre center of
samples remaining to train those classifiers. The number tied white circle around position X, and negatives are thepiesrin the black
strong classifiers to train grows exponentially with the fy@m region. The gray area is a no sampling zone. The last graplisshoother

ft | | hich in t ith th lexit tclassification problem in the parameter space, with pesitimd negatives
or tree eve S_' which In turn grows wi o € complexity 0samples closer to the position X. In Sec. IV-D those threglisacan be
the classification problem; hence the training process @i t related to the region of interest (ROI) classifier, coarsassifier, and fine
quite a long time for complex classification problems. Ripal classifier, respectively.
note that for each sampfe(Eq. 1) to evaluate during detection,

it is necessary to compute the probability over all the nades
the classification tree. As a result, it is necessary to cdenpu Motivated by the argument that "visual processing in the
P(y[S) for Ny = N x Ny x No X N, x No, times, wheréVy  cortex is classically modeled as a hierarchy of increagingl
denotes the number of sampling points to evaluate. Usualphisticated representations” [32], we design a simple-t
Ny is in the order of10%, which can have a severe impactomplex classification scheme. Assuming that the parameter
in the running time of the algorithm (in a standard dual-corgpace is represented I8, the idea is subdivide this initial
computer the probability computation ®6% samples using a space into subspace3; C ©; C ... € O C O, where
full binary PBT classifier of height five can take around 1ghe classification problem grows in terms of complexity from
seconds, which is substantially above our target of less thg, to ©,. This idea is derived from the works on marginal
one second). space learning [40] and sequential sampling [25], where the
authors study the trade-off between accuracy and efficiefcy
such strategy, and the main conclusion is that by implemgnti
such strategy, the training and detection algorithms areraé

We propose a two-part solution to the problems mentionggders of magnitude more efficient without damaging the
in Sec. IV-A. The first part is based on dividing the paramgccuracy of the approach. In Fig. 4, we show a visual example
eter space into subspaces, simplifying both the training apf this idea. Notice that the idea is to train different cifisss,
testing procedures. The second part consists of constgainjyhere the first stages tend to be robust and less accurate, and
the growth of the tree by limiting the height and number ahe |ast stages are more accurate and more complex. The main
nodes. This solution decreases Iearning and detectiorstirrﬁm"ference between this approach and the cascade scheme is
and improves the generalization of the classifier, as showat the first stages are trained witisabsebf the initial set of
below. parameters instead ofsaibspacef the full parameter space.

) _ _ _ We only train classifiers using a subspace of the full paramet

The value q(l;+1]l,...,11,S) is obtained by computing the value of

q(l;4+1]S) at PBT node reached following the path— > lo— >,...,1;, space in the last stages. . ) )
with 11 representing the root node ahe {—1,41} (see Fig. 3). Each subset and subspace is designed to have in the order

B. Constrained Probabilistic Boosting Tree
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computed as follows:

or = 2K X ||x1 — %X¢||,
oy = 2K X ||x3 — Xc||,

a=cos! (7(’“ _XC)'(I’O)) ) (7)

fI31 —xc]]
T =1z, — % cos(a),
Y="Yc— UTy Sin(Oé),
wherex represents a two-dimensional vecterepresent
vector dot products > 1 such that a region comprises the
anatomy plus some margifi,, 0) denotes the horizontal
unit vector, andx,. = (x., y.)-

« Forthe line measurements, the user defines two points:
andx, (see Fig. 6-b). Withx; andxs, we can compute
the cente, = "”2“"2, then the region parameters of (1)
are computed as follows:

¢) AC d) FL
or = 2K X ||x1 — %X¢||,
Oy = N0,

o = cos—! ((Xl —Xc)'(170)) ’ (8)

1 —xc[l
T =1z, — % cos(a),
_ %y o}

Y =y — 3 sin(a),
wherex represents a two-dimensional vecterepresent

e) HL f) CRL vector dot products > 1 such that a region comprises the
Fig. 5. Expert annotation of BPD, HC, AC, FL, HL, and CRL. anatomy plus some margi(i, 0) denotes the horizontal
unit vector,x. = (z., y.), andn € (0, 1].

The manual annotation is used to provide aligned images of

of 10 to 10° parameter space samples to be evaluated, Whl%ﬂatomles normalized in terms of orientation, positiomlesc

results in a reduction of three orders of magnitude compar%'ad aspect ratio. These images will be used for training the

to the initial number of samples mentioned above. Moreov&lassmer' There are five classifiers to be trained: 1) hepd, 2

the initial classifiers are presented with relatively simplabdo.men’. 3) femur, 4) hgmerus, and 5) fetal body. The head
classification problems that produces classification toéé&sv classifier is used to provide the HQ and .BPD measuremen.ts
complexity, and consequently the probability computation _(note _that even though the BPD is a line measurement it
these trees are faster than in sub-sequent trees. Finaiy g!s de.”VEd fr_om the HC measurem_e_nt through the use of
that the classification problem of each classifier is lessptexn its minor axis), the abdomen classifier allows for the AC,

than the original problem, the height and the number of tré%mur classifier is used to produce the FL, humerus classifier

nodes can be constrained. These implementations signlﬁcalﬁmduces HL{ ?:r_1d fetgl bedr)]/ IS utiedhto gompuiet.the CEL
reduce the training and detection times, and improve ghecasurement. Figure (b) shows the head annotation, where

generalization ability of the classifier. We call the resgt caliper x; _(red) is located at the back of the_head,_caliper
classifier the Constrained PBT (CPBT). xo (blue) is at the front of the head, and calipes (pink)
defines the minor axis of the ellipse and is located at the

side of the head (moving from; to xs in counter-clockwise

direction). Figure 5(c) shows the abdomen annotation, her
C. Annotation Protocol caliperx; (red) is located at the umbilical vein region, caliper

xo (blue) is at the spinal chord, and calipey (pink) defines

We explore the representation used by sonographers da@ minor axis of the ellipse and is located close to the
clinicians for the BPD, HC, AC, FL, HL, and CRL measuresstomach. Figures 5(d) and (e) display the femur and humerus
That is, HC and AC are represented with an ellipse, and
BPD, FL, HL, and CRL, with a line. Figure 5 shows expert
annotations of each measurement. This annotation exyplicit

defines the parametérin (1) for the positive sample of the % . x& %&
training image as follows: B
(my){ o)
V7 ¢

« For the ellipsoidal measurements, the user defines three % /
points: x; and x,, defining the major axis, ancs, \/) ¢
defining one point of the minor axis (see Fig. 6-a). With a) Ellipse b) Line
x; and x,, we can compute the center of the ellipse.

2 ) %g. 6. Ellipse and line annotations.
x. = *572, then the region parameters of (1) are
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b) Abdomen
o

P~

c) Femur

c) Femur

d) Humerus

e) Fetal body
annotations, respectively, where calipar(red) andx; (blue) Fig. 8. Examples of the ROI training set for BPD and HC (a), AJ, FL
are interchangeably located at the end points of the femuy HL (d), CRL (e).
bone. Finally, Fig. 5(f) displays the fetal body annotation
respectively, where calipet; (red) is located at the bottom of
the fetal body and and, (blue) is located at the head. Thi
annotation protocol allows for building an aligned traimiset

d) Humerus

e) Fetal body

Fig. 7. Examples of the training set for BPD and HC (a), AC @), (c),
HL (d), and CRL (e).

SHoat number; this means that each image has around 2MB).
Therefore, leaving the parameterout of the ROI classifier

as the ones shown in Figure 7, with= 1.5 andn = 0.38 for . . o
femur and humerus ang— 0.80 for fetal body in (7) and (8) means a large gain in terms of detection (_aff|C|ency. Another
) " important observation for the ROI stage is that the aspect

The values fom are defined based on the aspect ratio of the F . .

; . L . ratio o, /o, of the anatomy does not vary significantly in the
anatomical structure. Notice that the original image regiare o o

. . . X training set. Specifically, for heads, abdomens, and fetdi/b

transformed into a square size ™ x 78 pixels (used linear d for f dh -
: lation) in th f head. abdomen. and fetal bo /oy € [0.8,1.2] and for femurs and humerus, /o, = 1/7.
interpolation) in the cases o ' ' ' ?erefore the parametet, can also be left out from the ROI
and into a rectangular size @8 x 30 pixels (again, using bi- '

linear interpolation) for femur and humerus with aspecbratStage’ and its e§t|mat|on happens in the su_b.-sequent stages
width _ 1 for p = (.38 As a result, in the ROI stage, the positive samples are
; .38.

height located in a region of the parameter space defined by:
AiOI _ [A50|7A50|7X7 AESI,X], (9)

D. Training a Constrained Probabilistic Boosting Tree

As mentioned in Sec. IV-B, the training involves a sequendehere AR e [z — 6RO 24 6791, ARO! € [y — 6RO 4y 4672,
of classification problems of increasing complexity. Have, AR € [0, — 679" 0, + 659", and X denotes a parameter
rely on a training procedure (see Algorithm 1) involvingaér that is not learned in this stage (in this casgand a). In
stages referred to as the region of interest (ROI) clastifita Fig. 4 we display this concept of training for a subset of the
stage, the coarse classification stage and the fine clasisificainitial parameter set. Recall that the positive sample éaed
stage (see Fig. 9). at (z,y,a,04,0,) as defined in (1). On the other hand, the
For the ROI stage, the main goal is to use a subset R@gative samples are located in the following region of the
the initial parameter set in order to have a fast detection pframeter space:
hypothesis for sub-sequent classification stages. Rewati f AROl _ g _ AROI (10)
Section IlI-A that we rotate the image in intervals &f - T
and compute the integral image for each rotated version where © represents the whole parameter space. The ROI
the image. During detection, determining the parameter classifier is able to detect the position and scale of thecbbje
in (1) requires loading the respective rotated integralgea (within the limits ofAEiO'), but not its rotation nor its aspect
which is in general a time consuming task because it is n@itio (that is,« = 0 and o, = o, in (7) and (8) for
possible to have all integral images loaded in cache (thalusthis stage). This means that the training images are kept in
image size is 600x800, where each pixel is represented bjtsaoriginal orientation and aspect ratio, resulting inirtiag
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Hypotheses ‘ Fine Detection result

Coarse “
L Classifier
J

Classifier J

images aligned only in terms of position and scale, and the rorsmping™ C{;g{ﬁﬁ} Hypotheses
images are transformed to a square patch of &z€78 pixels.
In Figure 8, we show a few examples of training images fq_rg 9. Detection procedure.
training the ROI classifier.

The coarse classifier is then trained with positive samples

from the parameter subset: . i .
position and scale. The coarse detection only classifies the

positive samples for the ROI detector at smaller intervdls o
coarse , While the fine detection searches the hypothe-

{z,y,0,00,04
ses selected from the coarse search at smaller intervals of
5f|ne

{z.y,0,00,04}

Acoarse [ACO&TSQ Acoarse ACO&TSQ ACO&TSQ Acoars?
+

(11)

WhereAcoarseE [x_(gcoarsex_’_écoars? Acoarsee [y 6coarsey+

520&[5? Kcoarse c [aI 6coarsea + 600al’5? Acoarse c [Um _

§coarse O + 500&’5? and Acoarse [ 6(203!‘39 0_ + 500&’5? |n
Ty

order to improve the preC|S|on of the detect|0n from the ROI

to the coarse classifier, we s&2's¢< §RO! in Eq. 9 for all

parameters. The negative samples for the coarse classiier a

located in the following region of the parameter space:
_ AEOI _ A(farse’ (12)

ACO&I’SE

where ARC! is defined in (10). Finally, the positive samples

for the fine classifier are within the subset:

Aflne [Aflne Aflne Aflne Aflne Aflne] (13)
whereA“”e [ 5f|ne T+ 5f|ne] Aflne [y 5f|ne y+ 5f|ne]
Afme [ 5f|ne a_|_5f|ne] Afme [ 5f|ne 5f|ne] and
Af'”e € [oy —6f'”e oy + 60, The detection preC|S|on from the

coarse to the fine classifier is improved by setiiffff < §coarse

in Eg. 11 for all parameters. The negative samples for the fine

classifier are located in the following region of the paramet
space:

fine coarse__ A fine

A = A AL,

where A®2%€js defined in (12).
Data

(14)

: M training images with anatomy regiof(/, 6);}i=1,..,m
Maximum height of each classifier treéfro), Hcoarse Hifine
Total number of nodes for each classifiéfzor, Ncoarse Nfine

It =0andZ— =0

for i =1,..., M do

Add P random samples from sub-spad&©! (9) to 7+
Add N random samples from sub-spa@o' (10) toZ—
end

Data : Test image and measurement to be performed (BPD, HC,
AC, FL, HL, or CRL)

ROI, coarse, and fine classifiers

Hroi =0
for 6 =1[0,0,0,0,0] : dror : [maxz(z), maz(y), 0, maz(oz),0] do
oy = 0z

ComputeP(y = +1]5) (6) using ROI classifier, wher§' is an
image region determined by (1)

Hrot = HrolU (0, P(y = +1|5))
end
Assigned all hypotheses frofigo in terms of P(y = +1|.5) to
Hcoarse
for : = 17 vy |Hcoarsd do

Assume(6;, P;) = ithelement ofHcoarse

for 6 = [x; — 6;@'7 Yi — 550|7 0,0, — 5(50'70} : Ocoarse :

[£; 4 6RO y; + 6RO max(a), Oz + 559? max(cy)] do
ComputeP(y = +1|S) (6) using coarse classifier, whefeis
an image region determined I8y(1)

Heoarse= HcoarseU (97 P(y = +1|S))

end

end

Assigned the topd hypotheses fronHcoarsein terms of P(y = +1|.5)

to Hiine

for i =1, ..., |Hiine| do
Assume(6;, P;) = ithelement Of?_'[ﬁne

_ coarse . sfine .
for 6 = (9 6{1‘ Y,0,0q, o'y}) {z,y,0,02,04} °
(0; +5%‘1a’ysea . }) do
ComputeP(y = +1|5) (6) using fine classifier, wher§ is
an image region determined I8y(1)
Hiine = Hiine U (0, P(y = +1|S))
end
end
Select the top hypothesis froffine in terms of P(y = +1|5), and

display hypothesis ifP(y = +1|S) > TpEeT.
Train ROI classifier withHro| and Ngoj usingZ+ andZ~. Result : Paramete® of the top hypothesis.
It =0andZ— =0
for i =1,..., M do
Add P random samples from sub-spac€°2s¢(11) to It
Add N random samples from sub-spadé€©a@s€(12) toZ—
end
Train coarse classifier wittcoarseand NeoarseusingZ+ andZ—.
It =0andZ— =0
for i =1,...,M do
Add P random samples from sub-spadde (13) to Z+
Add N random samples from sub- spax}g'r € (14) toZ—~
end
Train fine classifier withHiine and Njine usingZt andZ—.
Result : ROI, coarse, and fine classifiers.

Algorithm 2 : Detection algorithm.

The valuerpgr was set in order to eliminate the bottom
5% of the cases in th&aining set We found important to set
such threshold in order to avoid large error cases. Thexefor
after the detection processH(y = +1|5) < 7prr, then the
system outputs a message, which says "no anatomy detected”.

F. Training Results

We havel, 426 expert annotated training samples for head,
1,293 for abdomen,l, 168 for femur, 547 for humerus,325
for fetal body. An ROI, a coarse, and a fine CPBT classifiers
have been trained. We are interested in determining the tree
structure of the classifier, where we want to constrain tee tr

According to the training algorithm in Sec. IV-D, theto have the fewest possible number of nodes without affgctin
detection algorithm must run in three stages, as describedtie classifier performance. Recall from Sections IV-D and
Algorithm 2. The ROI detection samples the search spapgE that a smaller number of nodes produces more efficient

uniformly using thedf? . as the sampling interval for training and detection processes and a more generalizable

Algorithm 1: Training algorithm.

E. Detection
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apr 0.2
classifier. Therefore, we compare the performance of tHe ful ~ °? ----Constrained PET

binary tree against a tree constrained to have only one child o1s E:””:::;i: 015/ | Full Binary Tree
per node. The number of weak classifiers is set to be at mosi, o
30 for the root node and its children (i.e., nodes at heights 0 © ~

and 1), and at most 3Qtree height) for the remaining nodes.  oo0s 0.05

error

0.1]

Note that the actual number of weak classifiers is autorritica | oL
determined by the AdaBoost algorithm [13]. The height of 0 %% eddn 7 0 02 Sl °° 7
each tree is defined alrol € [1,7], Heoarse € [1,10], and a) HC b) BPD

Hiine € [1’ 15]' with its .S.peCIfIC value determined ,throth:ig. 10. Training comparison between the constrained PRI falh binary
the following stop condition: a node cannot be trained witliee. The training cases are sorted in terms of the error urement. The

less than 2,000 positives and negative samples (total @04,(orizontal axes show the training set indices, which vefriem 0 to 1, where
samples). This stop condition basically avoids over-fittof ?h(': Ct:See"Jﬁtixtﬁ; tlgfgg;'”é?f’ofase with the smallest errod amepresents
the training data. The sampling intervals values for eaabest

are drol = [15, 15, X, 15, X], Ocoarse = [8, 8,20°, 8, 8], and

Stine = [4,4,10°,4,4]. Finally in Algorithm 1, the number of

additional positives per imag® = 100 and the number of CPBT classifier proposed in this paper. First, we describe th

negatives per imag&/ = 1000. methodology to quantitatively assess the performance of ou
From the parametet = [z, vy, a, 0., 0,)] of the top hypoth- System, then, we describe the experimental protocol. lyinal
esis, each measurement is computed as follows: we show the quantitative results along with screen shotiseof t

« BPD =0, using the response from the head detectdf€tection provided by the system.

where~ = 0.95. This value for-~ is estirIQateB(iIDger

th_e training set by computing = %_Zizl Tz()) A. Quantitative Assessment Methodology

with M being the number of training images for heads,
BPD(i) is the manual BPD measurement for image  For the quantitative assessment of our algorithm, we adopte
ry(i) = Gg_f;) with o, (i) denoting the height of the the methodology prop(_)se(_j by_ChaIana et al._ [8] _and reyised
rectangle which contains the head imaggee Eq. 7). Dy Lopez et al. [3], which is briefly explained in this section

o HC = 7 [3(ry +1y) — \/(3ry + 1) (rz + 3ry) |, where Assume that the segmentation of the anatomy is produced

: . ) s@' a curveA = {ay,...,a,}, Wherea; € R? represent the

image positions of the: control points that define this curve.

) Given another curvé8 = {b1, ..., b, }, the Hausdorff distance

which  penween these two curves is defined by

this value is the Ramanuja’s approximation of the ellip
circumference withr, = §= andr, = 3* (see Eq. 7).

o AC = 7 [3(rs +7y) = /Bra 7,2 + 37,
is the same computation as for HC.

« FLHL,CRL = 2r,, wherer, = %= (see Eq. 8). e(A,B) = max(m?x{d(ai,B)},mjax{d(bj,A)}), (16)

Figure 10 shows the measurement errors for HC and BP

in the training set for the constrained tree and the full tynaw_ste;ggéai’ B) = min; ||b; —a;l|, with ||.|| denoting Euclidean
tree, where the training cases are sorted in terms of the er 5 ' . .
The gold standard measurement is obtained through the

value. Assuming that th@T" contains the expert annotation for X )
BPD, HC, AC, FL, HL, or CRL andDT denotes the respectiveaverage of the user observations. Given tia}; ;) represents

automatic measurement produced by the system, the errof'hl‘ns measu.rement of user € {1,..,n} on image; €
computed as: {1,..., N} (i.e., GT represents one of the six measurements

error= |GT — DT|/GT. (15) considered in this work-BPD,HC,AC,FL,HL,CRL), then the
gold standard measurement for images obtained as:
Notice that the performance of the constrained tree is bette n
than that of the full binary tree. This is explained by thetfac GT; = 1 Z GT j)- (17)
that the constrained tree is more regularized and should be n--
able to generalize better than the full binary tree. Anokesr

d f th ined is the effici . .. The following statistical evaluations compare the compute
a \éantage OFt € rc]:onstrame btree 'it € efliciency in mg;n'ﬂgnerated segmentation to the multiple observers’ segment
and testing. For the cases above, the training process €or iy s The main goal of these evaluations is to verify whethe

full binary t_ree takes between Seven to ten days, while f%e computer-generated segmentations differ from the alanu
the constrained tree the whole training takes two to fousday,, antations as much as the manual segmentations differ

on a st.an(;ard PCk computer. The ldetecr']uon processug)r ? one another. Assume that we have a database of curves,
constrained tree takes, on average, less than one secoital, Uich asA and B in (16), represented by the variahig,

that of the full binary tree takes around three to four seson ith i € {0,...,n} andj € 1,..., N, wherei is a user index
Hence, a constrained tree classifier is used in the expet:ismegndj is an .i;".r;age index. Usei — 0 shall always represent

the computer-generated curve, while users {1,...,n} are
V. EXPERIMENTAL RESULTS the curves defined from the manual segmentations. We use the
In this section we show qualitative and quantitative resulfollowing two kinds of evaluations as proposed by Chalarja [8
of the database-guided image segmentation based on ljmodified Williams indexand 2) percentage statisticThe



IEEE TRANSACTIONS ON MEDICAL IMAGING 10

modified Williams index is defined as: measurement, 10 distinct images of fetal abdomen, and
1y 1 10 distinct images of fetal femur were evaluatediftgen
I = 5 n =1 Doy — (18) expert users. Therefore, we have fifteen different manual
n(n—1) 225 Dyt D,/ measurements per image (i.e., a totaldofx 15 = 600
1N N . . measurements).
where D = 3 iy e(ig, i) With e(.,.) defined in =g 5 minean expert users annotated 20 head images, 20

(16). A confidence interval (Cl) is estimated using a jackkni

) . . abdomen images, and 20 femur images. In total, we have
non-parametric sampling technique [8], as follows:

300 head images, 300 abdomen images, and 300 femur
Ié,) + 20.955€, (19) ?mages, which means Fhat therens pverl_apbetween
_ . _ images annotated by different users in this second set.
where zp.05 = 1.96 (representing th@5™ percentile of the , Set 3 Three expert users annotated 30 humerus and 35

standard normal distribution, fetal body images. In total, we have 90 humerus images,
L& 1/2 and 105 fetal body images, which means that thereis
se=4 71 Z[[(l) Iy , ov_erlap between images annotated by different users in
i1 this third set.

with I{) = & 3,7, I ;). Note thatl;, is the Williams indeX ¢ Results
of (183 calculated by leaving imageout of the computation
of D; ;. A successful measurement for the Williams index iﬁ1

In this section we show qualitative results in Fig. 11 and
to havel . close tol. the gquantitative assessment of our system using the Wialiam

The percentage statistic transform the computer-gertera dex and the percentage statistic described in Sec. V-A on

and manual curves into points in2a:-dimensional Euclidean the sets of data described in Sec. V-B. .
: Table | shows the error between control points of the curves
space (recall from (16) thatn is the number of control

points of the segmentation curve), and the goal is to Veri%enerated by our system and by the manual measurements.

the percentage of times that computer-generated curve Ee curves generated for the HC and AC measurements

within the convex hull formed by the manual curves. Ar?ontain 16 control points, whil_e the_ curve for BPD.’ FL, HL,
approximation to this measure is computed by [8] and CRL have two control points (just the end points of the

line). In addition to the Hausdorff distance, we also show
max{e(C,0;)} < max{e(0;, 0;)}, (20) results using the average distance, whefe.) in (16) is
! s substituted for
whereC is the computer-generated cur¢®, fori € {1,...,n} M M
are the observer-generated curves, ahd.) defined in (16). ¢(A, B) = 11 Zd(ai’B) " 1 Zd(bj,A) ’
The expected value for the percentage statistic depends on 2\m = m =
the number of observer-generated curves. According to Z.ope
et al. [3], who revised this value from [8], the successfdpr curves A and B. The Williams index and its confidence
expected value for the confidence interval of (20) should #aferval are shown in Table | for Set 1. The computer-to-
greater than or equal @—_i’ wheren is the number of manual observer errors measured on Sets 2 and 3 are displayed in

same way as in (19). for the Williams index has to be close to 1, so that it can be

concluded that there is negligible statistical differeheeveen
the the computer-generated and user measurements.
] o ) L The measurement errors computed from Set 1 are shown in
This system was quantitatively evaluated in a clinicalisgtt Tapje |1. Note that in this table we only consider the errors
using typical ultrasound examination images. It is impmrta(15) computed from the measurements of BPD, HC, AC, and
to mention that all ultrasound images used in this evaluatit,}L, and the gold-standard is obtained from the average of the
were not included in the training set. The evaluation protocse opservers’ measurements. We also present the coorelati
was set up as follows: coefficientr, which denotes the Pearson correlation, defined
1) User selects an ultrasound image of a fetal head, & follows:
domen, femur, humerus, or fetal body. OT S DT
2) User presses the relevant detection button (i.e., BPD or > Zj GT;DTj — %

B. Experimental Protocol

r )
HC for head, AC for abdomen, FL for femur, HL for \/(Z ar? _ 5 GT1)2) (Z- DT? (ZiDTi)z)

humerus, CRL for fetal body). #images #images
3) System displays automatic detection and measurement (21)
and saves the computer-generated curve. where GT; is the user measurement afdll; is the system
4) User makes corrections to the automatic detection anasurement for thé”" image (see Sec. IV-F). The measure-
saves the manual curve. ment errors computed from Sets 2 and 3 are shown in Table I,
Three sets of data are available, as follows: where the gold-standard is simply the user measurement.

« Set 1 10 distinct imgges_ of fetal heads for the BPD sye couid not compute the Williams index for Sets 2 and 3 bexaus
measurement, 10 distinct images of fetal heads for the H@ve only one user measurement per image
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a) BPD

c) AC

11

TABLE |
COMPARISON OF THE COMPUTER GENERATED CURVES TO THE
OBSERVERS CURVES FOR FETAL HEAQ ABDOMEN, FEMUR, HUMERUS,
AND BODY DETECTIONS ONSETS 1, 2,AND 3 (SEESEC. V-B). CO =
MEAN COMPUTER-TO-OBSERVER DISTANCE |O = MEAN INTER-OBSERVER
DISTANCE, WI = WILLIAMS INDEX , Cl = CONFIDENCE INTERVAL.

Set 1 Set 2 Set 3

Measure CO (mm) 10 (mm) wi 95% ClI CO (mm) CO (mm)

Head Head Humerus
Hausdorff 4.83 5.57 4.15 2.39
distance (o : 2.46) (o :1.12) 181 | (1.67,1.93) (o : 2.05) (o : 1.62)
Average 3.39 3.73 2.76 1.69
distance (o : 1.68) (o : 0.80) 157 | (1.35,1.79) (o : 1.40) (o : 1.65)
Abdomen Abdomen Body
Hausdorff 6.88 8.63 5.54 2.86
distance (o : 3.61) (o :1.08) 1.04 | (1.01,1.08) (o : 3.22) (o : 3.13)
Average 4.49 5.51 3.64 2.11
distance (o : 2.26) (o : 0.88) 1.00 | (0.95,1.05) (o : 1.89) (o : 1.79)
Femur Femur
Hausdorff 2.40 2.77 2.03

distance (o :1.28) (o : 0.73) 0.92 (0.84, 1.00) (o :1.89)

Average 1.81 2.05 1.46

distance (o : 0.96) (o :0.27) 095 | (0.86,1.03) (o : 1.04)

TABLE Il

COMPARISON OF COMPUTERGENERATED MEASUREMENTS TO THE
GOLD-STANDARD (AVERAGE OF THE FIFTEEN OBSERVER'S
MEASUREMENTS) USING ABSOLUTE DIFFERENCES ONSET 1.7 =
CORRELATION COEFFICIENT

CO (mm) CO (%) 10 (mm) 10 (%) r

2.06 4.38 5.09
BPD (o :'2.48) (0:2.55) | (0:2.66) | (0:1.64) [ 0.997

8.89 2.1 7.09 1.48
HC (o : 5.66) (0:1.57) | (0:3.41) | (o:2.58) | 0.999

14.51 3.12 14.17 3.01
AC (0:17.70) | (0:2:83) | (¢:7.33) | (0:0.79) | 0.993

1.13 2.59 0.89 2.10
FL (o : 0.99) (0:1.78) | (o:0.54) | (o:0.52) [ 0.996

of the fetus for Sets 1, 2, and 3. In this case the gestational
age is computed as a function of each measurement using the
Hadlock regression function [9]. The error is computed by
taking the average error of the measurement (Tables Il for Se
1, and Il for Sets 2 and 3) and computing what that error
represents in terms of number of days, but notice that this
error varies as a function of the GA of the fetus.

For all cases above, notice that the confidence interval (Cl)
for the Williams index is around 1 for all measurements, and

TABLE Il
COMPARISON OF COMPUTERGENERATED MEASUREMENTS TO THE
GOLD-STANDARD (OBSERVERS MEASUREMENTS) USING ABSOLUTE
DIFFERENCES FORSETS 2 AND 3.7 = CORRELATION COEFFICIENT

e) HL f) CRL
. . . CO (mm) CO (%) s
Fig. 11. Detection and segmentation results.
BPD (02:'27.398) (03:'5729) 0.985
8.34 1.71
HC (o : 7.07) (o :1.42) 0.996
Table IV shows the Williams index and percentage statistic ac | @rriby | @ %6y | 000
with respect to the user measurements (as shown in [8]). Note 1.52 3.60
. ) ot FL (o :1.94) (o :6.11) 0.982
that the confidence interval for the percentage statistalsh — o
be aroundi00 x 2= = 32 = 87.5%, wheren = 15 =number He | (0159 | (0:3:72) | 0.982
of manual measurements. Finally, Fig. 12 shows the average R | 0 BBy | 02%%,) | o.0ss

error in terms of days as a function of the gestational age) (GA
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TABLE IV TABLE V
WILLIAMS INDEX AND PERCENT STATISTIC FORBPD, HC, AC,AND FL COMPARISON OF THE COMPUTER GENERATED CURVES TO THE FIVE
MEASUREMENTS ONSET 1. WI = WILLIAMS INDEX , P =PERCENT OBSERVERS CURVES FOR FETAL SKULL AND ABDOMEN DETECTIONS ON
STATISTIC, Cl = CONFIDENCE INTERVAL. A SET OF30 TEST IMAGES- TABLE FROM [8] SEE TABLE | FOR DETAILS.
Wi 95% ClI P 95% ClI Measure CO (mm) 10 (mm) wi 95% ClI
BPD 1.27 (1.15, 1.40) 875 (82.5, 92.5) Head
HC 158 (1.39,1.78) 75.0 (69.0, 81.0) Hausdorff 4.64 3.83
distance (o : 2.61) (o : 1.90) 0.83 (0.70, 0.96)
AC 1.25 (1.11, 1.39) 100.0 | (100.0, 100.0)
Average 2.09 1.92
FL 117 (1.08, 1.26) 75.0 (69.0, 81.0) distance (o : 0.95) (o : 0.82) 0.92 (0.81,1.03)
Abdomen
Hausdorff 8.88 5.48
1 1 distance (o : 6.25) (o : 5.22) 0.61 (0.49,0.73)
----Setl .
N 8 et | @ s | w2540 | 0o | ©.57, 089
S g
5, HE TABLE VI
) COMPARISON OF COMPUTERGENERATED MEASUREMENTS TO THE
2 GOLD-STANDARD (AVERAGE OF THE FIVE OBSERVERSMEASUREMENTS)
%5 5 % yo s %5 5 % yo s USING ABSOLUTE DIFFERENCES ON A SET OBOTEST IMAGES- TABLE
Gestational Age (weeks) Gestational Age (weeks) EROM [8] SEE TABLE || FOR DETAILS.
a) BPD b) HC
N 3 CO (mm) CO (%) 10 (mm) 10 (%) r
0.71 1.19 0.83 1.33
8 10 BPD | (o :0.61) (0 :0.85) | (o:0.66) (o :0.82) 0.999
T 6 g8 5.22 2.07 8.46 3.54
g g . HC (o : 5.27) (o : 1.67) (o : 3.28) (o : 0.99) 0.996
5 4 5 12.6 6.35 11.62 5.65
4 AC (o : 9.48) (o : 5.26) (o : 10.6) (o : 6.53) 0.974
2 2|
10 20 30 40 50 10 20 30 40 50
Gestational Age (weeks) Gestational Age (weeks)
¢) AC d) FL VI. CONCLUSIONS
1 5 We presented a system that automatically measures_the BPD
10 4 and HC from ultrasound images of fetal head, AC from images
2 ° 74 of fetal abdomen, FL in images of fetal femur, HL in images of
T 32 fetal humerus, and CRL from images of fetal body. Our system
o4 B exploits a large database of expert annotated images im orde
2 ' to model statistically the appearance of such anatomieis. Th
0 X 0 o ot 12 is achieved through the training of a Constrained Probsttaili
estational Age (weeks) estational Age (weeks; . .
HL ) CRL Boosting Tree classifier. The results show that our system pr
e

duces accurate results, and the clinical evaluation shesusts
Fig. 12.  Average error in days in terms of gestational ageSkts 1, 2, and  that are, on average, close to the accuracy of sonogramners.
3 comparison with the method by Chalana [8] shows that our
method produces, in general, superior results. Moreolier, t
o ) algorithm is extremely efficient and runs in under half seton
the percentage statistic Cl is close to the expected valueoq? a standard dual-core PC computer. Finally, the clinical

87.50% for all measurements. In general, the HL and CREyg)yations showed a seamless integration of our system int
measurements present similar results compared to the ofpgf cjinical workflow. We observed a reduction of upTEY%

anatomies, even though their classifier models were buitt Wiy, the number of keystrokes when performing the automatic

much smaller training sets. Finally, it is interesting t@ S8 1 casurements (compared to the manual measurements).
Fig. 12 that the errors reported for each anatomy represent a

deviation of only a couple of days when GA 30 weeks and ACKNOWLEDGEMENT
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following configuration: Intel Core 2 CPU 6600 at 2.4 GHz, ac | os2 | (0.611.08 | s14 | 7.3, 65.5

2GB of RAM.
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